Crystal Field Theory (CFT)

 \triangleright This theory was applied mainly to ionic crystal and is therefore called Crystal Field Theory.

Postulates of CFT :

- \triangleright A complex is a combination of a central metal ion surrounded by other ions (ligands) with electrical dipoles.It considers anions as point charges and neutral molecules as dipoles.
- \triangleright The bonding between metal cations and ligands arises from the electrostatic attraction.

 \triangleright The interaction between the electrons of cation and those of the ligand is entirely repulsive .These repulsive forces are responsible for causing the splitting of d orbitals of the metal cations.

 \triangleright In the free metal ion, all the metal d orbitals have the same energy (i.e, degenerate).However when complex is formed the ligands destroy degeneracy of these orbitals i.e, orbitals now have different energies and the metal d orbitals splits into t_{2g} set (d_{xy}, d_{xz}, d_{yz}) and e_g set (d_{x2-y2}, d_z^2) .

Crystal Field Splitting

A summary of the interactions is given below.

Crystal Field Splitting

High Spin & Low Spin Complex

- \triangleright The high spin complex ions are those complex ions which contains greater number of unpaired electrons,
- \triangleright The low spin complex ions are those complex ions which contains lesser number of unpaired electrons.
- \triangleright High spin complexes are expected with weak field ligands due to less spin pairing.
- \triangleright Low spin complexes are expected with strong field ligands due to maximum spin pairing.
- For High Spin Complex ions , crystal field splitting energy (Δ) is small .
- \triangleright For Low Spin Complex ions, crystal field splitting energy (Δ) is large .
- **High spin –** Maximum number of unpaired electrons.
- **Low spin –** Minimum number of unpaired electrons.
- **Example:** $[Co(CN)_{6}]^{3}$ & $[CoF_{6}]^{3}$ -

High Spin & Low Spin Complex

High Spin and Low Spin Complex

- $[Co(CN)₆]$ ³⁻ Low spin complex
- $[CoF₆]^{3-}$ High spin complex

Crystal Field Splitting in Octahedral Complex

- \triangleright In the case of an octahedral coordination compound having six ligands surrounding the metal atom/ion, we observe repulsion between the electrons in d orbitals and ligand electrons.
- \triangleright This repulsion is experienced more in the case of d_x^2 v_y^2 and d_z^2 orbitals as they point towards the axes along the direction of the ligand.
- \triangleright Hence, they have higher energy than average energy in the spherical crystal field.
- \triangleright On the other hand, d_{xy} , d_{yz} and d_{xz} orbitals experience lower repulsions as they are directed between the axes.
- \triangleright Hence, these three orbitals have less energy than the average energy in the spherical crystal field.
- \triangleright Thus, the repulsions in octahedral coordination compound yield two energy levels:
- t_{2g} set of three orbitals (d_{xy} , d_{yz} and d_{xz}) with lower energy
- $e_{\rm g}$ set of two orbitals ($d_{\rm x}$ ² \sim _y² and d_z²) with higher energy

Crystal Field Splitting in Octahedral Complex

Crystal Field Spitting In Octahedral Complex

- **≻This splitting of degenerate level in the presence of** ligand is known as crystal field splitting.
- \triangleright The difference between the energy of t_{2g} and e_{g} level is denoted by " Δ_{o} " (subscript o stands for octahedral).
- \triangleright Some ligands tend to produce strong fields thereby causing large crystal field splitting
- \triangleright whereas some ligands tend to produce weak fields thereby causing small crystal field splitting.

Crystal Field Splitting in Td Complex

- \triangleright The splitting of fivefold degenerate d orbitals of the metal ion into two levels in a tetrahedral crystal field .
- The electrons in d_x^2 $-v^2$ and d_z^2 orbitals are less repelled by the ligands than the electrons present in d_{xy} , d_{yz} , and d_{xz} orbitals. As a result, the energy of d_{xy} , d_{yz} , and d_{xz} orbitals set are raised while the energy d_x^2 $\frac{1}{y^2}$ and d_z^2 orbitals set are lowered.
- \triangleright There are only four ligands in T_d complexes and therefore the total negative charge of four ligands and hence the ligand field is less than that of six ligands.
- \triangleright The direction of the orbitals does not coincide with the directions of the ligands approach to the metal ion.

Crystal Field Splitting in Tetrahedral Complex

Crystal Field Splitting in Tetrahedral Complex

Crystal Field Splitting in Tetrahedral Complex

- \triangleright Thus, the repulsions in tetrahedral coordination compound yield two energy levels:
- t_2 set of three orbitals (d_{xv} , d_{vz} and d_{xz}) with higher *energy*
- *e – set of two orbitals (d^x 2 -y ² and d^z 2) with lower energy*
- \triangleright The crystal field splitting in a tetrahedral complex is intrinsically smaller in an octahedral filed because there are only two thirds as many ligands and they have a less direct effect of the d orbitals. The relative stabilizing effect of e set will be -6Dq and the destabilizing effect of t_2 set will be +4Dq

Crystal Field Stabilization Energy (CFSE)

- \triangleright The stability gained by a dⁿ ion due to the splitting of its d orbitals by a crystal field and preferential occupation of lowest energy d orbitals is called it's Crystal Field Stabilization Energy (CFSE).
- \triangleright The energy difference between the eg and t_{2g} levels is given by $10D_q$. It states that each electron that goes into the lower t_{2g} level stabilizes the system by an amount of -4D_q and the electron that goes into e_g level destabilizes the system by +6D_q. That is the t_{2g} is lowered by 4D_q and the e_g level is raised by $+6D_q$.
- For example, the net change in energy for d^5 and d^{10} systems will be zero as shown below.
- **d**⁵ :- 3(-4D_q) + 2(+6D_q) = -12D_q + 12D_q = 0 d^{10} :- 6(-40 $\ddot{\theta}_q$) + 4(+60 $\ddot{\theta}_q$) = -240 $\ddot{\theta}_q$ + 240 $\ddot{\theta}_q$ = 0

Crystal Field Stabilization Energy Table

The crystal field stabilization energies for some octahedral and tetrahedral complexes of 3d metal ions are tabulated below.

Crystal Field Splitting in Square Planar Complex

Relation

- $\Delta_t = 4/9\Delta_o$
- Δsp=1.3 Δo
- $\Delta_t < \Delta_o < \Delta_{sp}$